Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.01 vteřin. 
Modeling of electromagnetic field propation in tunnels
Géze, Daniel ; Motl, Milan (oponent) ; Štumpf, Martin (vedoucí práce)
The submitted master’s thesis aims at the numerical analysis of electromagnetic-wave propagation in tunnels. To this end, an integral-equation formulation has been formulated and numerically solved with the aid of the boundary-element method (BEM). The experimental in-house Matlab implementation shows promisingly low computational demands with respect to the traditional direct-discretization approaches. Sample numerical examples of the electromagnetic-field distribution for various tunnel profiles are given. Validation and post-processing procedures are done by means of a simplified analytical model. The influence of the tunnel profile and its impedance-wall properties on the resulting electromagnetic-field distribution inside a tunnel is demonstrated on numerical examples.
Akcelerace neurostimulace pomocí metod umělé inteligence
Gaňo, Martin ; Chlebík, Jakub (oponent) ; Jaroš, Jiří (vedoucí práce)
Léčba pomocí transkraniálního ultrazvuku je rychle se rozvíjející doménou medicíny. Tato metoda přináší možnosti neinvazivní mozkové terapie, včetně ablace, neuromodulace nebo potenciálního otevření hematoencefalické bariéry pro následující léčbu. Zdravotník potřebuje neustále dostávat zpětnou vazbu o ultrazvukovém vlnovém poli v lidské lebce v reálném čase, aby mohl pomocí těchto technik provést léčbu. Tradiční metody pro simulaci monochromních ultrazvukových vln jsou výpočetně příliš drahé. Jejich použití by proto bylo pro tyto účely neproveditelné a přináší to potřebu alternativních metod.Tato práce navrhla a implementovala metodu řešení Helmholtzovy rovnice ve 3D prostoru pomocí neuronové sítě dosahující vyšší rychlosti konvergence. Návrh neuronové sítě využívá odlehčenou architekturu založenou na UNet. Hlavním předmětem zájmu této práce je neuromodulace, protože v této aplikaci je možné ignorovat několik proměnných a jevů, které by v jiných případech nebyly zanedbatelné. Jejich vynecháním z výpočtů se zvýšila šance na provedení výpočtů v rozumném čase. Tato metoda je plně bez dozoru a používá výhradně uměle generované sférických harmonik a fyzikální ztráty pro trénink, bez nutnosti anotovaných dat. Výsledky ukázaly rychlejší výpočet s přijatelnou chybou než jiné tradiční metody.
Akcelerace neurostimulace pomocí metod umělé inteligence
Gaňo, Martin ; Chlebík, Jakub (oponent) ; Jaroš, Jiří (vedoucí práce)
Léčba pomocí transkraniálního ultrazvuku je rychle se rozvíjející doménou medicíny. Tato metoda přináší možnosti neinvazivní mozkové terapie, včetně ablace, neuromodulace nebo potenciálního otevření hematoencefalické bariéry pro následující léčbu. Zdravotník potřebuje neustále dostávat zpětnou vazbu o ultrazvukovém vlnovém poli v lidské lebce v reálném čase, aby mohl pomocí těchto technik provést léčbu. Tradiční metody pro simulaci monochromních ultrazvukových vln jsou výpočetně příliš drahé. Jejich použití by proto bylo pro tyto účely neproveditelné a přináší to potřebu alternativních metod.Tato práce navrhla a implementovala metodu řešení Helmholtzovy rovnice ve 3D prostoru pomocí neuronové sítě dosahující vyšší rychlosti konvergence. Návrh neuronové sítě využívá odlehčenou architekturu založenou na UNet. Hlavním předmětem zájmu této práce je neuromodulace, protože v této aplikaci je možné ignorovat několik proměnných a jevů, které by v jiných případech nebyly zanedbatelné. Jejich vynecháním z výpočtů se zvýšila šance na provedení výpočtů v rozumném čase. Tato metoda je plně bez dozoru a používá výhradně uměle generované sférických harmonik a fyzikální ztráty pro trénink, bez nutnosti anotovaných dat. Výsledky ukázaly rychlejší výpočet s přijatelnou chybou než jiné tradiční metody.
Modeling of electromagnetic field propation in tunnels
Géze, Daniel ; Motl, Milan (oponent) ; Štumpf, Martin (vedoucí práce)
The submitted master’s thesis aims at the numerical analysis of electromagnetic-wave propagation in tunnels. To this end, an integral-equation formulation has been formulated and numerically solved with the aid of the boundary-element method (BEM). The experimental in-house Matlab implementation shows promisingly low computational demands with respect to the traditional direct-discretization approaches. Sample numerical examples of the electromagnetic-field distribution for various tunnel profiles are given. Validation and post-processing procedures are done by means of a simplified analytical model. The influence of the tunnel profile and its impedance-wall properties on the resulting electromagnetic-field distribution inside a tunnel is demonstrated on numerical examples.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.